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At high frequencies we have
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Comparison with formulas (6.1) shows that at high frequencies the viscosity of the liquid starts
playing a dominant role, suppressing the high-frequency non-linear instability.

In conclusion we note that the LGE theory has been developed much less than the NSE theory,
because in general the LGE is a non-integrable equation [3]. Nevertheless, the LGE, like the NSE,
arises in the description of many physical systems [3] and is an important object for research,
analogies, etc.
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RENORMALIZATION GROUP METHOD FOR THE PROBLEM
OF CONVECTIVE DIFFUSION WITH IRREVERSIBLE
SORPTION
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The renormalization group method is used to analyse the propagation of a thin solute slug in a seepage flow
with account of diffusion and sorption processes. Sorption is assumed to be partially irreversible and is
described by an isotherm with a hysteresis loop. A general technique is developed for analysing the
problem. Calculations for the self-similar case are presented and the results are shown to be sufficiently
accurate compared with the exact solution.

A NUMBER of problems in the theory of solute transport by seepage flow require consideration of the
irreversibility of sorption in the porous medium. Irreversible retention of the solute is particularly
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significant for thin slugs. Irreversibility may have a useful effect for the case of pollutant propagation
in groundwater or a harmful effect if the solute is used as a tracer for analysing the seepage flow
structure and especially as a vehicle for enhancing oil recovery. In [1, 2], the conventional model of
convective diffusion transport of a solute in porous media (see, e.g. [3, 4]) has been applied to allow
for irreversible adsorption in a framework of a very simple scheme. Specifically, linear adsorption
was assumed with a constant Henry coefficient da/dt = I'* for da/dt>0 and linear desorption with a
different Henry coefficient da/dt = T~ for da/dt<0; non-equilibrium time-dependent effects were
ignored. This adorption “hysteresis” provides a simple description of the experimental data on
irreversibility of adsorption at least for a one-time increase/decrease of concentration, which is
typical for the tranversal of a thin solute slug. Exact self-similar solutions of the corresponding
non-linear model have been constructed in [1, 2] under certain simplifying assumptions: a special
law of variation of seepage velocity over time and neglecting the dependence of the diffusion
coefficient on the seepage velocity.

In this paper, we examine the same problems using the renormalization group (RG) approach.
The main objective of the study is to assess the applicability of the RG technique and to compare the
RG results with previous numerical results. This comparison shows that the RG method ensures
satisfactory accuracy, so that in future it can be applied to more natural physical situations
(ineluding non-self-similar problems).

1. Consider the one-dimensional problem of convective diffusion transport of a thin solute slug by

a fluid flow in a porous medium with a constant diffusion coefficient D and different values of the

Henry constant for sorption and desorption, i.e. for the regions where the solute concentration

respectively increases or decreases. This difference of the Henry constants is introduced to account

for the irreversibility of sorption. The solute concentration c in this case evolves according to the
equation

a(mc + a (c)) dc d%
—a  trOzF =D

, I'*, dc/ot >0 (1.1)

a'(c) =

() I, dc/at<L 0

Here v (¢) is velocity and a(c) is the quantity of sorbed impurity per unit volume of the medium.

We consider the solution of the Cauchy problem on a straight line for Eq. (1.1), which is
continuous together with the solute flux j = vc— Dac/at. Equation (1.1) can be expressed in an
equivalent form [H (x) is the Heaviside function] as

St g — g g = — ol (— ) (f O S — 7 ) (1.2)

ge= (et —e)fe", et =m+ I‘i, f(t) = v (t)/(2De*)%

Note that Eq. (1.2) does not have Galilean invariance, because the Heaviside function depends
on the Eulerian derivative (3/0¢) and not on the Lagrangian one (8/8t + f(¢)d/3x ). The reason for this
is that sorption is a local process and it is determined by the history of variation of the concentration
near a given point of the solid porous skeleton at rest, and not in a given moving particle of the
liquid. Equation (1.2) is a generalization of the equation of a non-linearly elastic drive introduced in
[4] (see also [5]), which has been investigated in detail in a somewhat different statement in [6]. It
differs from the previous case by the presence of a convective term.

With the aim of analysing the evolution of a thin concentration impulse, we choose an almost
delta-like distribution as the initial condition of the Cauchy problem:

¢(z,0) = exp (— 5 (z-— S f(s)ds)2)§Q°G(z,0,—-6) 6>0) (1.3)
—8

V2n6

where G(x, t, ty) is Green’s function for the convective diffusion equation
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[ 2 + 1) 5 — 5 o | G t.10) = 8(2) 8 (e — 1) (1.4)

Green’s function depends on ¢ and ¢, separately, and not on the time lag (¢—f,), because the
coefficient in Eq. (1.4) depends explicitly on time. Note that Qy G (x,¢, f) is the exact solution of the
Cauchy problem for the convective diffusion equation [Eq. (2.2) with £ = 0] if at the initial instant
t = —J the concentration has a delta-function distribution. Let us investigate the behaviour of the
solution in the asymptotic region #8— .

2. In the general case (e #0), the solution can be represented in the form

t
Qo 1 t
¢z )= F{Vt: (a— Sof(s)ds) ,T,e} 2.1)

It has been shown [1, 2] that, like the problem of a modified heat source [4], problem (1.1) for
v = \tY2 and the initial conditions (1.3) does not have a self-similar asymptotic solution of the first
kind as r— o (3=>0) that satisfies the conditions of continuity of the solute concentration ¢ and its
derivative dc/dx. Yet the problem has a self-similar solution of the second kind with a functional
representation of the form

c@t)= A —2& __

( Dt)(lm)/ﬁ
+eo .
A=y, }’.1:: ced% ¢, =—S“ c(z,0)dz, &= W (2.2)

where vy is a multiplier that depends on the normalization conditions of c(£), and the exponent a is
determined by the parameters of the problem. The dependences a(e*, e 7, B)(B = MD'?) obtained
by numerical solution of the non-linear eigenvalue problem were presented in [1, 2]. For B =0
[v(¢) = 0], this solution is identical with the self-similar solution of the second kind for a modified
heat source [6].

Self-similarity of the second kind implies that the function F in (2.2) depends non-analytically on
the parameter 3 as §=>0. Therefore, Eq. (1.2) cannot be solved by the ordinary perturbation
method with a small parameter e taking QoG (x, t, —3) as the initial approximation. Indeed, this
process, if it were legitimate, would produce a power series in &€ with every term in the form of a
self-similar solution of the first kind for 8=>0 (i.e. analytical in §), and the solution therefore would
be analytical in 8. Non-analytical dependence on 8 is attributable to the fact that dc/o¢ has a
non-integrable singularity as =0, and the perturbation-theory corrections therefore contain
divergences.

These divergences are similar to the divergences that arise in quantum field theory when regularization is
removed [7] (in our problem, d plays the role of a regularization parameter). The field-theory divergences are
eliminated by a renormalization procedure, which ensures that non-analytical dependence on the regulariza-
tion parameter enters only the renormalization constants of the original system parameters and field
amplitudes. In the presence of a dimensional regularization parameter, the renormalization constants are of
non-zero dimension, so that the renormalized physical parameters acquire an additional (anomalous)
dimension, i.e. they transform in an unusual way under scale transformations [7-9]. The anomalous dimension
exponents in field theory are identical with the exponents of partial self-similarity (self-similarity of the second
kind) in the intermediate asymptotic (IA) solution method [6]. This phenomenon has been noted in [10]. In
field theory, the anomalous dimension exponents are calculated by the RG method, which provides a technique
for improving the perturbation-theory results by imposing the condition of renormalization invariance, i.e. a
condition ensuring that the computed asymptotic behaviour of a physical quantity is independent of the choice
of the normalization conditions [7, 9].

In this paper, the method of calculating the anomalous dimension exponent for the diffusion equation with
sorption hysteresis [10] is generalized to the case of diffusion-convective transport. A self-similar solution of the
second kind for convective transport has been obtained by the IA method [1, 2] for the case v = A1,

3. In accordance with the RG method [1], we rewrite Eq. (1.2) in the integral form
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¢ (2, 2) = S dz'G(z—1',t,0) ¢ (z', 0) —
’ ’ re gt de ('t a 1 & + g
where the first term on the right-hand side is the solution of the unperturbed problem (e = 0).
Substituting the initial condition (1.3), we obtain

c® (2, t) = § d2’G (z 7', 8, 0) ¢ (2, 0) = Q4G (2, t, —b) (G.1)

Here we have used the fact that Green’s function of the convective-diffusion transport equation
(1.4) obviously satisfies the relationship

Gz — g b ty) =8d2’G(z—2',t, t')G (2 — zy, t', t,) (3.2)

which 1s essentially a Smoluchowski-Kolmogorov—Chapman equation for a Markov process [12].
Iterative solution of the integral equation corresponds to the representation of the solution c as a
perturbation-theory series in powers of ¢, in which every term diverges as 8= 0. Improvement of
the perturbation theory reduces to rearranging this series by renormalization of the coefficient Qg in
(3.1). To this end, substituting (3.1) into the integral equation, we replace the original parameter Q,
by the renormalized (phenomenological) parameter Q = ZQy and add to the perturbing part a
compensating counterterm (CT) of the form (1 —Z) Qqy(x, ¢, —3). As a result, we obtain

¢(z,t) = QG(z, t, —8) —efdz' [dt'G (x — z', 1, 1') X
X H [—a8¢ (', t')ot'] [f (t) d/ox’ — 1/,8%/6x2) X
Xe(@, )+ (1 —Z) QG (z, t, —6) (3.3)
The renormalization constant Z is defined in such a way that the singular correction to the

renormalized Q vanishes as 8> 0 at some ‘‘normalization point” ¢ = 1.
We are looking for the asymptotic solution of the problem in the form

clz, t) =q(t, 6, &, Q) %F (z, t, &), q(t, 8, &, Qg) = §dzc (z, t) (3.4)

i.e. the non-analytical dependence on 3 as §=>0 only occurs in the function q(z, 3, €, Qy), which
represents the total quantity of the solute at time ¢ (it varies as a result of partial irreversibility of
sorption). The function F(x, ¢, €) depends on the self-similar variable [x —[f(s)ds]%¢, but it is no
longer a Gaussian exponential.

For ¢ = 0, we have

t
4= 0 F(0,t,0)= —=exp [~ (s— 75 ds)'} (3.5)

0

and the constant Q is the total amount of the solute in the fluid, which remains constant. The
asymptotic solution corresponding to a thin initial impulse is self-similar.
The renormalization constant Z = Q/Q, is defined by the condition

Q=q(t 8, & Qo) li— (3.6)

By (3.6), the singular dependence on 3 is incorporated in the phenomenological parameter Q,
which is the amount of impurity at time 7.

When c(x, ¢t) is evaluated by the renormalized perturbation theory, the function ¢(¢, 3, €, Q)
defined by (3.4) depends in the limit as 1~ o (8— 0) on the parameter Q = Z(Q,, the time ¢, and the
choice of the normalization point 7; from dimensional considerations we obtain

q (¢, 8. 8. Qo) > q (t, 7, e, Q) = Qo (t/7, &) (3.7)

Renormalization invariance implies that the physical picture does not change when the timescale
7 is replaced by 7, and Q is accordingly replaced by Q, [the parameter (, is defined by (3.6) for
=7 ], i.e.

Qo (t/3, &) = Q. (t/7y, &) (3.8)
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By the normalization condition (3.6),

(1, e =1 (3.9)
From (3.8) and (3.9), we obtain the RG functional equation for the function ¢:
@ (&, &) = @ (A, &) @ (u/A, &) (3.10)

Differentiating (3.10) with respect to A and then setting A = 1, we obtain the RG differential
equation

{—udlou + ar} o (u, &) = 0, ar = 3¢ (u, €)/ou |yu (3.11)
The solution of Eq. (3.11) that satisfies the normalization condition (3.9) has the form
@ (t/v, €) = (t/7)*R® (3.12)

and the problem of finding the partial self-similarity exponent reduces to evaluating the function
¢ (t/7, €) near the normalization point ¢ = 7. By the RG method in its field version [7], we calculate
¢ (t/7, €) in the lowest approximation of the renormalized perturbation theory, i.e. we take the first
iteration for Eq. (3.3)

¢(z,t) = QG (z, t, —-6)+eQSdt’Sdz’G(z-—x £E) X
xH[—-—&G(z,t,-—-—G)/at]aG(z,t,—6)/6t’+ CT (3.13)

Using the expression for Green’s function (1.3) and definition (3.6), we obtain

, wylt’, 8)
4(153’00)—00Z]/t.6+1/8ﬂ Sdt m)% S dw X
w_(¥, 8)

% exp{—%’-—t—%}[w—-i + 2w VT (' + 8] +

+QU—2) VIEFO) wa(t,8) = VIFG—0) F1—1t/(t—9) (3.14)

As #/8— o, noting that the main contribution to the integral (3.14) for =0 comes from the
region of small ¢’, we obtain

E , wlt’, 0)
q(th 8, e Qp)= Q,,z{1 +- &/(8m)% § L. S dw W (w, t')} +0,(1—2) (3.15)
w~(¢, 0)

W (w, t) = exp (—w?/2)lw? — 1 + 2wyt — 6f (1)]

The parameters of the CT Qy(1— Z) are chosen so that they satisfy the normalization condition
(3.6). As a result, we obtain

t
¢ (t/v.e) =1+ (T:)—%_ S = S duW (w, t’) (3.16)

h 1 W

In the self-similar case, when f(t) = y¢# ~''2, the functions w.. are independent of ¢ and the integrals
are easily evaluated. We obtain

@ (t/s, ) = 1 + eA In (t/7) (3.17)

Wy

A= V— S dw exp (— --) [w?—1 4 2uwy] =

1 1442 —
= —— {eVV-y, + W [ VAL N = 341+
2V 2ne (e, ey = Vine ' ve=VVP+1xy (3.18)

For small €, we should thus have
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Figure 1, using the graphs of a(e*, €7, B) from [1, 2], compares the values of 2az (the RG
method, the solid curves) and « (the IA method, the dashed lines) as a function of € for two fixed
values of e 7: ¢~ =0.25 (m = 0.2, " = 0.05, the left scale) and e =04 (m=0.2, T~ = 0.2, the
right scale). Note that for e~ = 0.4 the values of —2ag and « are virtually identical. For €~ = 0.25,
for large values of y and the same values of €, the calculation of ar up to the first term of
perturbation theory is insufficiently accurate. For § = 0, the results of calculations from (3.18) are
identical with the calculations of a in [10].

4. The same method is applicable to the axisymmetric convective diffusion problem with
irreversible sorption in a stationary velocity field of the form
v (r) = Ave/r? 4.1
In this case, the concentration equation
[eXxd/at + Ar-1d/or — DA®e (r, 1) = 0 (4.2)

for a radially symmetric initial distribution can be represented like (1.2) in the form

for+ B3 — e -
—eil [~ 5] [sE =t 5] e b= “9

Here we have made the change of variables r=>r(D/e*)"2. As in the passage to Eq. (3.3), we

rewrite Eq. (4.3) in integral form

®© t oo
c(rit) = S rar'Gr,r',tyc(r’,0) +e S dsS rar'G(r,r',t —s) X
0 0 0
x H [—-g;-c(r’,s)] [ ::,, —-—ﬂ—;_,—1——aa;-,-] c(r',s) (4.9)

Green’s function G(r, r’, t) satisfies the equation
{a/t -+ (B —1) rtdlor — *or2} G (r,r', ) =8 ()6 (r — ') r? (4.5)

the solution of which has the form

oo

G(ror'yt) = H(t) (=) [ ndhexp (—221) Tya (r) Tpn () (4.6)

[
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where J, (x) is Bessel’s function of the first kind.

Using the well-known Fourier-Bessel integral, we can show that Green’s function (4.6) satisfies
the Smoluchowski~Kolmogorov—Chapman equation

Grirpt—ty) = (FarG(r,r' t— )G ro, t' — t5) (4.7)
o

which is an analogue of relationship (3.2) for the one-dimensional problem.
Taking the initial distribution in the form

Q 1% \B/2 3
¢, 0) = QG (r: 0, —8) = —rerpmys (76—) exp(-—-{s-) (4.8)
and using (4.7), we obtain the solution of the unperturbed problem
0 = _ Qe s B/s .
@ =06m 0+ 0= rrrmers (wery) P (—wery) @9

Equation (4.3) thus takes the form

]
c(rt) z(guc;(r,o,t+.3)+.»,Sazs P adr G(r ' t— 8)X
o

TR o ey 8

xH [—2od [~ B2t Eei.s) (4.10)

Like the above, we renormalize the parameter (J, by making the change Qy=>Q = Z(Q, and
adding a compensating counterterm. Then, in the lowest approximation of the renormalized
perturbation theory, we obtain

t -
clr t) = ()G(r,r',t+6}+s§é Sr’dr’G(r, Pt —s)X

[

xH[—2pet D ] SRt | cT = 6 (0 +8) +

s ds
4 Vm ”
+80§'§' ‘Sﬁ FArG(.r st + 80— g () o (— ) X
]
t rl;m’
x [1+-§-—-§}]+cr-_—o{c(r,o,t+a)~acs-§—‘- \ e x
° (4.11)

XG(r Vitit+6—8) L@ + (@2 —1)G(r.0,t + s)},
O =gy () e () (t+E+5)

As 80, the main contribution to the integral over s is from the region near s = 0, where the
integrand is singular. Retaining in (4.11) only the contribution from the singular part and choosing
the renormalization constant Z from the normalization condition (3.6}, we obtain for the total
quantity of the solute

git, v, e) = Q@ {1 — &4 In (t/1)} 4.12)
2VisBla

— - L1 pr2)etbre
A= § gase(p) = AR

Thus, for the partial self-similarity exponent we obtain in our problem
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Fic. 2.

ap = —ed (4.13)

The comparison of the self-similarity exponents 1 — 2ag (calculated by the RG method) and a(e™,

€7, v) (calculated by the IA method [1]) is presented in Fig. 2. The results are close to those for the
convective diffusion equation in the one-dimensional case. Here the left scale corresponds to

m

=0.2,I~ =0.05, and the right scale tom = 0.2, T* = 0.2.

The method of Sec. 4 can also be used to solve the diffusion equation with irreversible sorption

(without convection) in the d-dimensional case. As a result, for the partial self-similarity exponent
we obtain the expression

ap = —e (d/(2e))*/*T (d/2) (4.14)

which in the one-dimensional case d = 1 reproduces the previous result of [10].

11.

12,
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